Threshold Events and Identification: A Study of Cash Shortfalls

Tor-Erik Bakke and Toni M. Whited
Journal of Finance, 2012

Discussion by Fabian Gamm
May 5, 2017
Provide guidance how one can and cannot use threshold events to identify causal relationships (resolving endogeneity issues)

Looking at a prominent paper that uses threshold events:

Rauh (2006), Investment and Financing Constraints: Evidence from the Funding of Corporate Pension Plans

Rough overview of Rauh’s motivation:

- No financing constraints → internal cash shortfalls should not lead to a reduction of (profitable) investments since external capital markets can be used

- Problem when empirically testing this relation: investment opportunities can drive both investment and cash flows but are not directly observable → endogeneity
Motivation

- **Idea:** Use exogeneous variation in cash flows for identification
 - mandatory contributions (MC) to defined benefit pension plans
 - depend on degree of pension funding = pension assets - pension liabilities
 - discontinuities at 100% funding, 90% funding, 80% funding and an additional kink
 → 4 potential threshold events
 - Ass: investment opportunities do not have the same jumps

- **Approach:**
 \[
 \frac{I_{it}}{A_{i,t-1}} = a_i + a_t + b_1 Q_{i,t-1} + b_2 \frac{CF_{it}}{A_{i,t-1}} + b_3 \frac{FS_{it}}{A_{i,t-1}} + b_4 \frac{MC_{it}}{A_{i,t-1}} + u_{it},
 \]
 → controlling for Tobin’s Q / operating CFs / funding status FS (pension assets – pension liabilities)

- **Result:** Firms cut investment by 70 ct. for each dollar of mandatory pension contribution

- **Claim:** This effect is causal!
Motivation

- Bakke and Whited (2012) show that this result comes from an improper identification strategy:
 - small number of potentially financially distressed firms drive the result
 - comparability between treatment and control group questionable

- Intuition to use threshold events for identification comes from regression discontinuity design (RDD) – econometric method introduced in the 1960s
 - crucial to understand when it is valid to extend the intuition behind RDD to more general regression settings
Background: Regression Discontinuity Design (RDD)

- Threshold event = discrete event/treatment when an observable continuous variable passes a known threshold
 - here: jumps in mandatory pension contributions when funding status passes a certain threshold

- Assumption: Firms have imperfect control over their exact location near the threshold (quasi-random assignment of the treatment)
 - plausible: funding status depends on market values of assets, interest rates, ...

 → Thus: observations immediately to one side of the threshold are unlikely to differ systematically from observations immediately to the other side
 → valid control and treatment groups

- Local effect of treatment = average differences between variable of interest (here: investment) between treatment and non-treatment group
 → causal interpretation
Regression Discontinuity Design (RDD)

- RDD has strong local validity (firms close to the threshold) but weak external validity (firms far away from the threshold)
 → resolves endogeneity problem only for observations close to the threshold

- Extrapolating results to the whole sample
 - assume homogeneous treatment effect
 - control for the systematic differences (unobservable?)

→ Thus: including discontinuous variables in normal regressions using the whole sample as done by Rauh (2006) does not guarantee identification (not a strict application of RDD)
 → carefully examine whether this is valid or not
Two kernel regressions (nonparametric) of investment on funding status

- 100% funding: → lots of observations
 → but jump is not significant and has a small economic magnitude
- Other thresholds: → very few observations (external validity issue)
 → no significant discontinuities
Which threshold is most relevant for identification?

<table>
<thead>
<tr>
<th>Dependent variable: Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market-to-Book</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nonpension</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cash Flow</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MPCs</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Funding</td>
</tr>
<tr>
<td>Gap</td>
</tr>
<tr>
<td>Violation</td>
</tr>
<tr>
<td>Indicator</td>
</tr>
<tr>
<td>Distance from</td>
</tr>
<tr>
<td>90% Underfunding</td>
</tr>
<tr>
<td>90% Underfunding Indicator</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Distance from</td>
</tr>
<tr>
<td>80% Underfunding</td>
</tr>
<tr>
<td>80% Underfunding Indicator</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Distance from the Kink</td>
</tr>
<tr>
<td>Kink Indicator</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Results

- Similar regression setup as in Rauh (2006) → variables scaled by total assets
- 4 thresholds tested (with dummy)
- Only significant decrease in investment at the 90% underfunding threshold
Dropping 12% of sample that is less than 90% funded: all significance gone

Dropping 6% of the sample that is less than 80% funded: significant again

Identification seems to come from the 80%-90% funded firms

But: These 529 firms are only ~6% of the total sample

Can one really extrapolate this result to the rest of the sample?
Treated firms are on average 33% smaller, have less cash-flows and earnings, pay lower dividends, and have lower bond-ratings and Z-scores → some are indicators of financial distress/financing constraints → comparability violated

Mandatory pension contributions are tiny relative to investment

<table>
<thead>
<tr>
<th></th>
<th>Full Sample</th>
<th>In Violation</th>
<th>Not in Violation</th>
<th><90% Funded</th>
<th><80% Funded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total assets</td>
<td>3,418</td>
<td>3,435</td>
<td>3,409</td>
<td>2,362</td>
<td>2,152</td>
</tr>
<tr>
<td>Mandatory Contributions</td>
<td>0.001</td>
<td>0.003</td>
<td>0.000</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>Investment</td>
<td>0.069</td>
<td>0.066</td>
<td>0.071</td>
<td>0.057</td>
<td>0.055</td>
</tr>
<tr>
<td>Cash Flow</td>
<td>0.096</td>
<td>0.089</td>
<td>0.100</td>
<td>0.068</td>
<td>0.057</td>
</tr>
<tr>
<td>Bond Rating</td>
<td>0.411</td>
<td>0.400</td>
<td>0.417</td>
<td>0.271</td>
<td>0.193</td>
</tr>
<tr>
<td>Dividends</td>
<td>0.019</td>
<td>0.015</td>
<td>0.021</td>
<td>0.010</td>
<td>0.011</td>
</tr>
<tr>
<td>Employment % Change</td>
<td>0.808</td>
<td>0.520</td>
<td>0.965</td>
<td>-1.691</td>
<td>-2.853</td>
</tr>
<tr>
<td>Earnings</td>
<td>0.042</td>
<td>0.034</td>
<td>0.046</td>
<td>0.014</td>
<td>0.006</td>
</tr>
<tr>
<td>Z-Score</td>
<td>2.780</td>
<td>2.280</td>
<td>3.052</td>
<td>1.667</td>
<td>1.599</td>
</tr>
</tbody>
</table>

Problem 2 with this identification

Large systematic differences in characteristics between observations that provide identification (<90% funding) and rest of the sample
Analysis using RDD (local sample analysis)

1. Check whether firms seem to ‘manipulate’ funding gap

- Assignment measure of treatment should be not perfectly controllable by managers
- No clustering right after thresholds \rightarrow no evidence of systematic active manipulation \rightarrow valid assignment measure
- Kind of plausible given the small economic magnitude of the mandatory pension contributions (losing tax benefits if plan is overfunded)
Analysis using RDD (local sample analysis)

2. Local responses (Threshold = 100% funding)

- dependent variable = label of graph

 y-axis: coefficient on dummy that = 1 when funding < 100% (estimate of treatment effect)

 x-axis: gap-width = absolute value of distance from the threshold points
 → increasing sample size → trade-off: statistical power vs. unbiasedness

- Investment not significantly different from zero
Analysis using RDD (local sample analysis)

2. Local responses (Threshold = 100% funding)

- Significant negative treatment effects for R&D, inventories, receivables and changes in employees
- Similar results when using 90% threshold
Strong sensitivity of investment to mandatory pension contributions found in Rauh (2006) stems from heavily underfunded firms that:
- constitute a small fraction (~6.7%) of the sample
- are systematically different from the rest of the sample with respect to firm characteristics that are related to financial distress and financing constraints

→ cannot directly extrapolate the results to the whole sample
→ cannot rule out the possibility that unobservable characteristics cause both the pension underfunding and the investment declines

Firms that are affected by a mandatory pension contribution shock actually seem to manage receivables or the number of employees instead of reducing investments (but: local sample analysis)